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Abstract-Buckling loads are determined numerically for isotropic and circumrerentially ortho­
tropic plates with regard to the presence of concentric delaminations or different geometries. for
various combinations or geometry and material parameters. energy release rates are computed in
the post-buckling range and predictions are made about the initiation and stability orcrack growth.

I. INTRODUCTION

A serious but not infrequent cause of failure in laminates is due to inter-layer cracks or
dclaminations. Such flaws may be present already at fabrication or they may develop at
quasi-static loading. in particular at free boundaries. and notoriously at impact. The result­
ing damage may lead to a severe degradation of stiffness and strength of a load-carrying
member. and means to analyse thc consequences arc clearly desirable. In particular for
comprcssed panels. the combined events of buckling and delamination growth may lead to
catastrophic failure. Accordingly. with the increasing use of composites in design. such
problems have received much attention in recent years. perhaps Chai el al. (1981) being
the first investigators to study the problem in a systematic manner. Some of the major issues
involved have been recently discussed in a survey by Storakers (1989).

The prcsent study is concerned with combined buckling and delamination growth in
a radially compressed plate with and without a central hole. The material properties
considered are axially orthotropic though homogeneous. Typically the analysis of the
issues involved includes several steps; first the loading required to initiate buckling must
be determined and an analysis of the ensuing post-buckling behaviour performed. Then
criteria for initiation and continuation of growth of inter-layer cracks have to be applied
and the effects as regards progressing delamination have to be predicted. The buckling
analysis may be carried out in a traditional way although non-trivial technical issues may
emerge for instance due to contact problems. in the post-buckling range. As regards
initiation of crack growth and propagation. linear fracture mechanics is usually relied upon
and such events are mostly assumed to occur at a constant value of the energy release rate.
This issue is not without ambiguity though as it is fairly well established that inter-layer
shearing modes are generally more resistant to growth. To take such aspects into account.
a recent method proposed by Suo and Hutchinson (1988) and Suo (1988) for decomposition
of crack growth modes in beams may be generalized and incorporated in the present
problem without any fundamental difficulties. The more simple criterion involving the total
energy release rate is. however. adopted presently.

Axisymmetric problems of the nature just outlined received some attention earlier as
analyses based on first-order post-buckling theory have been carried out e.g. by Kachanov
(1976). Bottega and Maewal (1983) and Evans and Hutchinson (1984). As emphasized by
Yin (1985) however. in general. a fully nonlinear analysis is needed. The load required for
initiation of buckling of an isotropic delaminated circular plate has been determined by Yin
and Fei (1984) for various geometries and in particular for a thin delamination. Yin and
Fei (1988) have also analyzed post-buckling and crack growth. Although much has been
learnt about the phenomena involved, the situations dealt with have been restricted by
special assumptions and particular geometries. The present contribution aims at greater
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generality. by solving a set of fully nonlinear equations for buckling and delamination of a
compressed plate and. in particular. including the effects of a central hole and anisotropy.

2. FIELD EQUATIONS

In von Karman kinematics for plates. the total strains are composed of a stretching
term and a bending term such that

u =da'
1:. = - - -­

r r dr
(I)

in obvious notation when axisymmetry prevails.
The materials to be considered are assumed linear elastic though cylindrically ortho­

tropic. Then the relations between middle surface strains and membrane forces N" Nil may
be written:

where t is the plate thickness and the moduli E" Ell and contraction ratio V,II. VIJ, are related
through v,IJEII = vlJ,E, by reciprocity.

Introducing the notation k~ = EIJ/E" D, = E,t1/[12(I-v,lIvlJ,)] the relations between
curvatures and bending moments AI" M IJ reduce to:

I (AI, - V,oi\t{lJ)
.~-----_.-

D, (l-v,lJvlJ,)

Ida'

r dr

I (ily/o - vo,M,)
- k~D, (I - V,IJVo,) .

(3)

The single non-trivial in-plane equilibrium equation reads in case ofaxisymmetry

d
dr(rN,)-No = 0 (4)

expressed in cylindrical coordinates while the equation for transverse equilibrium reduces
to

d(d ) d( dW)Ci; d,(rM,)-M IJ + dr rN, dr = -pro (5)

With no transverse loading present. either distributed, p(r). or at the boundary. egn
(5) may be integrated once to read:
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Fig. I. Plate and delamination geometry.

d dll'
dr (rM,) - M;I = -rN, dr .
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(6)

In Fig. I a circular plate is depicted containing a central hole of radius b and a circular
delamination of radius c. The first task is to determine when this assembly. presently
modelled as composed of three annular plates. buckles under an external compressive load
No. To this end the field equations laid down above may be applied to each plate separately.
supplemented with continuity conditions and boundary conditions. As regards the latter.
the vanishing of any transverse shear force by (6) implies that the boundary conditions for
a free edge and hinged edge reduces to

M, =0 (7)

as a rigid-body transverse displacement is available. For a clumped edge the boundary
condition is

dw
dr = O. (8)

For annular plates the hole boundary was in all cuses assumed to be free. as was
thought to be of most interest from a practical point of view.

At the outer boundary of the plute. r = a. the radiul membrane force is

while at the hole, r = b.

N, = -No.

N, =0.

(9)

(10)

It then remains to establish equations of compatibility and continuity of dynamic
variables at the delamination front. r = c.

In Fig. 2 are shown details of the deformed geometry of the three plates, I, 2. 3. at the
delamination boundary. As regards kinematics. continuity of slope requires that

(II)

while continuity of radial displacements requires that

(12)

and
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Fig. 2. Load rcsultants ~lnd displaccmcnts at the delamination front.

Continuity of membrane forces and bending moments requires that

( 13)

( 14)

( 15)

respectively.
This completes the setting of the boundary value problem, though for technical reasons

at this instant it proves useful to introduce dimensionless variables according to

r
p=­

a

_ I d (Wi)4>--- -
I pdp Ii

N a 2

"p=---
I D'

"
( 16)

i = I, 2, 3, for the individual plates.
It is then a routine matter to combine the kinematical relations (I) and the constitutive

eqns (2), (3) in order to write the equilibrium eqns (4) and (6) in dimensionless form. The
result is

(17)

and
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(18)

respectively. where a prime denotes differentiation with respect to p. The present for­
mulation was first given by Bodner (1954) for an isotropic case.

The dimensionless variables may finally be introduced into the boundary conditions
and the compatibility and continuity conditions at the delamination front, eqns (11)-(15),
but the resulting explicit expressions are suppressed for brevity.

3. SOLUTION OF THE BUCKLING PROBLEM

The first step when performing the buckling analysis is to derive the pre-buckling
membrane stress field by aid of eqn (17) with the right-hand side suppressed. Enforcing the
boundary conditions (9) and (10) the solution is

a
2

t l No k-l [I (Pb)2kJp=--- 2kP --
I D" t I (I - Pb ) P

(19)

for the individual plates.
In the case of a full plate, Pb = O. eqn (18) with (19) inserted admits an analytical

solution for the buckling mode expressible by aid of standard Bessel functions as

(p = A, J 2k (2A- I h1 / 2) + Bj Y2k ( 2A-; pk + 112 )
I P k+1 k+I P P k+1 k+1

where A" B, are arbitrary amplitudes and

(20)

It should be emphasized, however, that here and in the following, only axisymmetric
buckling modes are considered, as it is believed that in general for the cases to be dealt
with, they are associated with the lowest buckling load.

In order to completely set the eigenvalue problem, the confrontation of (20) with
relevant boundary conditions is quite straightforward and so also is the case for the
continuity condition (14). Enforcement of the remaining conditions (12), (13) and (15)
requires some reflection, however, as regards retention of terms of relevant order.

To this end the variables present in (12) and (13) were expressed by using series
expansion in the post-buckling range. Then by using the pre-buckling solution (19), the
remaining condition (15) reduces to

where the bending moments may be expressed by using the deflection slope through the
constitutive eqns (3).

For the case of a full plate, determination of the critical value of No(A-f) is now
quite straightforward by introducing (20) into the external boundary condition (7) or
alternatively, (8) together with the continuity conditions (II) and (21) expressed in the
dimensionless variables cP" according to (16). The result is a system of homogeneous
equations generating the required eigenvalues.

For a plate with a central hole, Pb =1= 0, however, the situation becomes somewhat more
involved. This derives from the fact that no analytical solutions may be found for the
buckling modes cPl' This is no major obstacle though as the governing differential eqn (18)
may be readily solved by using a standard computer procedure based on Merson's form
of the Runge-Kutta method for simultaneous ordinary first-order equations. With this tool
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r-i Guess P1(l)

I (7) or (8) with ~;(!) arbitrary but .~ 0 I
i~l(l)

~ Eq. !18) with j = I I
I!P I (pc)' $1 (pc),

I Ill) with i '" 1 and Z I
1$,,(Pr )

t

I Eq. (18) with j =Z + (i) I
1il-l2(pc),

I (11) with i =2 and :1

I$J(Pci,
I Eq (18) with i =3 + (7) f

~$:i(Pc)

L.--t Is :~l) satisoed' ho

rES
I p~r)... '" 11',(1)/ I

Fi~. 3. AI~orilhll1 sdwmc Il,r solutiOIl or the ei~envaluc prohlem.

(22)

availahle the required eigenvaluc may he found hy a "shooting method" hascd on an
algorithm details of whidl arc depicted in Fig, .\,

In the post-buckling range the governing dilferential eqns (17) and (I X) have to be
solved in full and simultaneously. Also for this case, however. the computer procedure just
outlined may be used to advantage to solve four coupled nonlinear lirst-order equations
utilizing Newton iteration. Technically the problem to determine thc post-buckling bchav­
iour of the three-plate assembly with duc account of continuity is somewhat complicated
and a suitable algorithm has to be designed. Again it was found advantageous to use a
"shooting method" and the details of the lin~t1 procedure adopted is depicted in Fig. 4 which
is believed to be self-explanatory.

4. THE ENERGY RELEASE RATE AT DELAMINATION GROWTH

As has already been forecast. the criterion adopted for initiation and continuation of
delamination growth is that the energy rcle~lse per unit area of growth will attain a critical
and constant value. When crack growth is self-similar or when the crack contour may be
reproduced by a discrete set ofparumeters there is no fundamental ditncuity in determining
the rate of change of potential energy of the system. For a problem similar to the present
this method has been adopted e.g. by Evans and Hutchinson (1984) for the initial post­
buckling range. In an alternative approach for a circular erack Yin (1985) and Yin and Fei
(1988) have used the local value of a small strain version of the M-integral.

Local values of the energy release rate with due account of nonlinear kinematics in a
general situation have recently been derived by Storakers and Andersson (1988) starting
from von Karman plate theory and first principles. Thus these writers found that the energy
released at crack advance (ja(x~) at a crack contour C having the local normal n~, could be
expressed as

-1)U= fllp,tllln,1I11i5adr,

where P,p is a plate analogue of Eshelby's energy momentum tensor and Il II denotes its
jump determined from the individual plate members intersecting at the crack front.
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Fig. 4. Algorithm scheme for solution of the post·hul:kling prohlem.

Explicitly P,/I reads

2\

(23)

where W denotes the plate strain energy density and the jump of the last term, involving
shear forces, vanishes due to continuity.

It is now convenient to use the axisymmetric reduced form of (22) and determine the
released energy per unit area as

(24)

in obvious notation.
By aid of the adopted constitutive equation, derivation of the P, values for the individual

plates expressed in radial and transversal displacements is quite straightforward. The result
is

P, = _ E,li {(~.~)~ _k2(~)~ _ ~ (dWi)2
2(l-vrl/vll,) dr r 4 dr

-v ~(dWI)2 1,2 [(d 2
Wi )2 _ k

2(dW1)2J}
II, r dr + 12 dr~ r 2 dr . (25)

Once the post-buckling solution is known it is then a routine matter to determine the
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Fig. 5. Budling load, (A~')2 = -,v~;lI'({),,. for a full ISotropic pbtc ,IS a function of crack
radius, I'. = clll, for di/recent values of delamination thidness, r = 1,/1,; (-) clamped boundary,

( ) simply supported boundary.

l:nl:rgy rl:kasl: rall.: hy USl: 01'(24) and (25), When prl:scnling explicil rl:sullS il proves suilable
lhough lo inlroduce a dimensionless measure defined by

c = (1 - V,"V",),/ G
E' \ '
',I i

(26)

In their analysis Storakers and Andersson (1988) also discussed ways of improving the
accuracy by basing determination of the energy release rate on dynamic variables and also
using balance equations for the energy momentum tensor. The post-buckling solution is,
however, believed to generate high accuracy and (25) will be strictly adhered to.

5. RESULTS AND DISCUSSION

The first issue of interest concerns the influence of delamination geometry and consti­
tutive properties on the buckling load. The results for a full isotropic plate are shown in
Fig. 5 for three values of the delamination thickness, Here the value 0.3 has been chosen
for Poisson's ratio and also in the sequel for VII" It is evident that at smaller delamination
radii, the behaviour is overall buckling at a load only slightly affected by the presence of a
delamination. On the other hand, save for a mid-plane delamination, r = 0.5 (r = /)// 1) at
larger radii buckling is local with respect to the thinnest delaminated layer and the critical
load is virtually independent of the external boundary conditions. If the radius representing
the wavelength of the deformed profile ofan undamaged plate is denoted by p. the transition
point from overall to local buckling occurs at Pc/p·· r = 2 for both simply supported and
clamped external boundary conditions. This finding essentially agrees with that of Yin and
Fei (1984) in their analysis of the present eigenvalue problem. The general features are also
very similar to those found by Simitses el al. (1985) for a corresponding rectilinear case.
The results given in Fig. 5 indicate when a so-called thin film approximation is applicable



Buckling and growth in orthotropic plates

20 .......---r--.,..--..,---T'"""--,----,

16~--4---l\+~-...;....--+---t---t

12l---+---+\---..p..,;:---+'----+---i

(A<·)l,
al---..,......l.---+-~..--t----+~--t----I

oL--l_-L---=::r:::::::::::::i:=~:J----J
0.4 05 06 01 :.S 10

9c
Fig. 6. Buckling load. {).'n t "" -N~aZjD" for an annular isotropic plate as a function of crack
radius. Pc "" cja. for different values of del~mination thickness. , '" t Jjt h P& "" 0.4; (--) clamped

outer boundary. (---) simply supported outer boundary.
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to determine the initiation of buckling. In this approach transverse deflection is disregarded
save for the thin delaminated part.

The results for a plate having a central hole with radius p" =0.4 arc shown in Fig. 6.
The sensitivity of the buckling load to the delamination size is of the same character showing
a substantial decrease beyond a certain delamination radius although the transition value
is now naturally increased. Essentially the same features were found to prevail for the case
of orthotropy. k > I. as regards the relation between buckling load and delamination size.
The quantitative stiffening is. however, dependent on the buckling mode and this effect is
depicted in Fig. 7 for the three different delamination thicknesses. As may be seen for small

120,...---,.......---,---.,.---,.---,

k

Fig. 7. Buckling load. (AnI =N":aZjD". for a full orthotropic plate as function of modulus ratio.
k Z= EojE" for different values of delamination thickness. ' = tJlt l ; (--) clamped boundary

p, =0.35. (---) simply supported boundary p, == 0.5.
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Fig. 8. Deflection modes in the post-buckling range.

values of k. thin film buckling. at r = 0.1, is less sensitive to k while at larger values the
opposite is true.

In all cases dealt with the initial buckling mode was as depicted in Fig. Sa. that is every
plate element deflected transversally in the same direction. In the post-buckling range.
however. a snap-through into a mode according to Fig. 8b occurred shortly after buckling
for r = 0.1 and 0.25.

As has become evident. especially thin delaminations may cause a dramatic reduction
of the load required for initiation of buckling. This by no means implies that the load-carry­
ing capacity is exhausted but that the compressive stitfncss of the plate assembly undergoes
only a slight decrease. No details will be dwelt upon as regards this phenomenon but sumce
it to mention that in the case of r = 0.1. P.. = 0.5 and a full isotropic plate the stitrness was
reduced by less than 3'1.. at an external load being eight times the buckling load. Similarly
for r = 0.25 the reduction was approximately 14% at three times the buckling load.

Instead the interest will now be focussed on the energy release rate at progressing
delamination. The dimensionless energy release rate as a function of external loading in the
post-buckling range is given for three values of the delamination radius in Fig. 9 for a thin
delamination and in Fig. 10 for a moderately thin one. In both situations the energy release
ratt: incrt:ases with the external loading and also for an increasing delamination radius.
Thus within the Gritlith philosophy unstable crack propagation is to be expected in par-
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Fig. 9. Energy release rate. G = (1- v",vo,)a'iE,t i G, for a full isotropic plate as function of load.
J.; = NIlo 21D". for different values of delamination radius. 1', = cia. ! 0.1. clamped boundary.
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; f "" Null' /D". for dilfcn:nt valucs of del;lIninatil>n radius, I',. = (,/a. r = 0.25. clamped boundary.

ticular for stubbier delaminations. Again the circumstances prevailing arc similar to those of
a rectilinear case as analysed by Yin e( al. (1986). These writers predicted that for compressed
wide columns, delamination buckling followed by growth is with few exceptions an unstable
process.

In order to investigate associated load- deflection relations at eventual delamination
growth, results are given in Fig. II for two values of the relative delamination thicknesses as
in rigs lJ and 10. In both cases buckling was essentially local and in the thicker case, 't =0.25,
the relative deflection was around 0.5 at twice the buckling load while the thinner one, 't = 0.1,
was essentially less so.
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w3101/t l
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6 8 '0

Fig. II. Transversal displacement, w"{O)II,, for a full isotropic plate as function of load.
;f = Noa'ID". fordilTcrent values ofdelamination thickness. r = 11/1" p< = 0.5, clamped boundary.
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Fig. 12. Energy release rate, (;:: (I - v",v",)a41£,1: G. for a full isotropic plate as function
of delamination radius. p,. = cja. for different values of delamination thickness. r :: IJII,. Ai '" 3;
(-) clamped boundary. (---) simply supported boundary. (_. -) thin film approximation.

It is of particular interest to investigate the accuracy of the frequently employed thin
film approximation in the present context. To this end a comparison of energy rclease rates
is made in Fig. 12 where exact results and those ofa thin film analysis are shown for a chosen
load in the post-buckling range for different delamination radii. The agreement is quite
satisfactory in the case of clamped plates even for a rdative delamination thickness of 0.25
though the thin film results are slightly non-conservativc from the view-point of crack
propagation. In the case of simple support, howcver, it is only in the very initial stages of
post-buckling that the thin film approximation may be applied to determinc energy release
rates with some confidence.

For a full isotropic plate Yin and Fei (1988) studied the case of a thin delamination,
r =: 0.1, approximately with the complete von KarOl,tn equations applied to the thin part of
the plate assembly and linear equations to the rcmainder. Comparison was made with the
results ofthese writers for p, =:: 0.25 and the agreement found was excellent. Thus confidence
was gained as regards the accuracy of the present number method and also as regards the
relevance of the approximation made by Yin and Fei.

For annular plates the situation becomes somewhat more involved. Figure 13 shows
that for a plate with a relative internal hole radius of OA at a given load the energy release
rate might attain a maximum for a particular delamination radius. Thus there exists a
possibility that progressing delamination may be arrested. This being so for externally
clamped plates, on the contrary a simple support crack will always be unstable in the sense
discussed regardless if a central hole is present or not. Since circumstances prevailing in
practice are, however, almost certain to be a combination of the two boundary conditions
discussed, crack arrest is not likely to occur in such members.

The effect just discussed is, however, material dependent as illustrated in Fig. 14. Thus
with the same plate and delamination geometry as for the isotropic case, when k =: 2, crack
growth is predicted to be unstable regardless of boundary conditions and eventually is so
whether a central hole is present or not.

No results have been given in the post-buckling range for the case of a mid-plane
delamination. This is due to the finding that almost immediately after buckling, crack closure
occurred in the vicinity of the delamination boundary for values of r close to or equal to
0.5. This proved to be the case for both full and annular plates at essentially global buckling.
Contact problems of this kind may not be accommodated properly within the algorithm
used, and the effect of this phenomenon will be dealt with elsewhere.

6. CONCLUDING REMARKS

The presence of delaminations might decrease the buckling load for full and annular
plates drastically. It was found that, at least for moderately thin delaminations, the behav·
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Fig. 13. Energy release rate. (J "" (I-v",v..}a·IE,fl G. for an annular isotropic plate as function of
delamination radius. p, = clCl. for different values of delamination thickness. ,= f,/f,. P. "" 0.4.

).r = 6. clamped outer boundary.

iour was one of either overall or local buckling with a rather narrow transition zone with
respect to delamination size. Although the effect on post-buckling stiffness might not be
severe. within the Grilfith philosophy eventual delamination growth was in general predicted
to be unstable at least for full isotropic plates. In order to arrive at conservative estimates
an imperfection sensitivity analysis is then warranted. In the advanced post-buckling range,
however. shear modes might dominate crack growth. Whether this feature might lead to
crack arrest deserves a separate study, also as for annular plates, indications of crack arrest
were found, though not in the presence of anisotropy.

A thin film approximation proved to be adequate in particular circumstances although
it became apparent that the boundary conditions may play an important role for a member
of finite size. In the c"lse of very thick delaminations crack closure effects are to be expected.
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Fig. 14. Energy release rate. (J = (I-v",v..}a·IE,f~ G. for an annular orthotropic plate as function
of delamination radius. P, =cIa. for different values of delamination thickness. r = f,/f" P. = 0.4.

k = 2. A; = 6; (--) clamped outer boundary. (---) simply supported outer boundary.
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